cacoshf, cacosh, cacoshl

From cppreference.com
< c‎ | numeric‎ | complex
Defined in header <complex.h>
float complex       cacoshf( float complex z );
(1) (since C99)
double complex      cacosh( double complex z );
(2) (since C99)
long double complex cacoshl( long double complex z );
(3) (since C99)
Defined in header <tgmath.h>
#define acosh( z )
(4) (since C99)
1-3) Computes complex arc hyperbolic cosine of a complex value z with branch cut at values less than 1 along the real axis.
4) Type-generic macro: If z has type long double complex, cacoshl is called. if z has type double complex, cacosh is called, if z has type float complex, cacoshf is called. If z is real or integer, then the macro invokes the corresponding real function (acoshf, acosh, acoshl). If z is imaginary, then the macro invokes the corresponding complex number version and the return type is complex.

Parameters

z - complex argument

Return value

The complex arc hyperbolic cosine of z in the interval [0; ∞) along the real axis and in the interval [−iπ; +iπ] along the imaginary axis.

Error handling and special values

Errors are reported consistent with math_errhandling

If the implementation supports IEEE floating-point arithmetic,

  • cacosh(conj(z)) == conj(cacosh(z))
  • If z is ±0+0i, the result is +0+iπ/2
  • If z is +x+∞i (for any finite x), the result is +∞+iπ/2
  • If z is +x+NaNi (for any[1] finite x), the result is NaN+NaNi and FE_INVALID may be raised.
  • If z is -∞+yi (for any positive finite y), the result is +∞+iπ
  • If z is +∞+yi (for any positive finite y), the result is +∞+0i
  • If z is -∞+∞i, the result is +∞+3iπ/4
  • If z is ±∞+NaNi, the result is +∞+NaNi
  • If z is NaN+yi (for any finite y), the result is NaN+NaNi and FE_INVALID may be raised.
  • If z is NaN+∞i, the result is +∞+NaNi
  • If z is NaN+NaNi, the result is NaN+NaNi
  1. per DR471, this holds for non-zero x only. If z is 0+NaNi, the result should be NaN+iπ/2

Notes

Although the C standard names this function "complex arc hyperbolic cosine", the inverse functions of the hyperbolic functions are the area functions. Their argument is the area of a hyperbolic sector, not an arc. The correct name is "complex inverse hyperbolic cosine", and, less common, "complex area hyperbolic cosine".

Inverse hyperbolic cosine is a multivalued function and requires a branch cut on the complex plane. The branch cut is conventionally placed at the line segment (-∞,+1) of the real axis.

The mathematical definition of the principal value of the inverse hyperbolic sine is acosh z = ln(z + z+1 + z-1)

For any z, acosh(z) =
z-1
1-z
acos(z)
, or simply i acos(z) in the upper half of the complex plane.