cacoshf, cacosh, cacoshl
Defined in header <complex.h>
|
||
(1) | (since C99) | |
(2) | (since C99) | |
(3) | (since C99) | |
Defined in header <tgmath.h>
|
||
#define acosh( z ) |
(4) | (since C99) |
z
with branch cut at values less than 1 along the real axis.z
has type long double complex, cacoshl
is called. if z
has type double complex, cacosh
is called, if z
has type float complex, cacoshf
is called. If z
is real or integer, then the macro invokes the corresponding real function (acoshf, acosh, acoshl). If z
is imaginary, then the macro invokes the corresponding complex number version and the return type is complex.Parameters
z | - | complex argument |
Return value
The complex arc hyperbolic cosine of z
in the interval [0; ∞) along the real axis and in the interval [−iπ; +iπ] along the imaginary axis.
Error handling and special values
Errors are reported consistent with math_errhandling
If the implementation supports IEEE floating-point arithmetic,
- cacosh(conj(z)) == conj(cacosh(z))
- If
z
is±0+0i
, the result is+0+iπ/2
- If
z
is+x+∞i
(for any finite x), the result is+∞+iπ/2
- If
z
is+x+NaNi
(for any[1] finite x), the result isNaN+NaNi
and FE_INVALID may be raised. - If
z
is-∞+yi
(for any positive finite y), the result is+∞+iπ
- If
z
is+∞+yi
(for any positive finite y), the result is+∞+0i
- If
z
is-∞+∞i
, the result is+∞+3iπ/4
- If
z
is±∞+NaNi
, the result is+∞+NaNi
- If
z
isNaN+yi
(for any finite y), the result isNaN+NaNi
and FE_INVALID may be raised. - If
z
isNaN+∞i
, the result is+∞+NaNi
- If
z
isNaN+NaNi
, the result isNaN+NaNi
Notes
Although the C standard names this function "complex arc hyperbolic cosine", the inverse functions of the hyperbolic functions are the area functions. Their argument is the area of a hyperbolic sector, not an arc. The correct name is "complex inverse hyperbolic cosine", and, less common, "complex area hyperbolic cosine".
Inverse hyperbolic cosine is a multivalued function and requires a branch cut on the complex plane. The branch cut is conventionally placed at the line segment (-∞,+1) of the real axis.
The mathematical definition of the principal value of the inverse hyperbolic sine is acosh z = ln(z + √z+1 + √z-1)
For any z, acosh(z) =√z-1 |
√1-z |