catanhf, catanh, catanhl
| Defined in header <complex.h>
|
||
| (1) | (since C99) | |
| (2) | (since C99) | |
| (3) | (since C99) | |
| Defined in header <tgmath.h>
|
||
| #define atanh( z ) |
(4) | (since C99) |
z with branch cuts outside the interval [−1; +1] along the real axis.z has type long double complex, catanhl is called. if z has type double complex, catanh is called, if z has type float complex, catanhf is called. If z is real or integer, then the macro invokes the corresponding real function (atanhf, atanh, atanhl). If z is imaginary, then the macro invokes the corresponding real version of atan, implementing the formula atanh(iy) = i atan(y), and the return type is imaginary.Parameters
| z | - | complex argument |
Return value
If no errors occur, the complex arc hyperbolic tangent of z is returned, in the range of a half-strip mathematically unbounded along the real axis and in the interval [−iπ/2; +iπ/2] along the imaginary axis.
Error handling and special values
Errors are reported consistent with math_errhandling
If the implementation supports IEEE floating-point arithmetic,
- catanh(conj(z)) == conj(catanh(z))
- catanh(-z) == -catanh(z)
- If
zis+0+0i, the result is+0+0i - If
zis+0+NaNi, the result is+0+NaNi - If
zis+1+0i, the result is+∞+0iand FE_DIVBYZERO is raised - If
zisx+∞i(for any finite positive x), the result is+0+iπ/2 - If
zisx+NaNi(for any finite nonzero x), the result isNaN+NaNiand FE_INVALID may be raised - If
zis+∞+yi(for any finite positive y), the result is+0+iπ/2 - If
zis+∞+∞i, the result is+0+iπ/2 - If
zis+∞+NaNi, the result is+0+NaNi - If
zisNaN+yi(for any finite y), the result isNaN+NaNiand FE_INVALID may be raised - If
zisNaN+∞i, the result is±0+iπ/2(the sign of the real part is unspecified) - If
zisNaN+NaNi, the result isNaN+NaNi
Notes
Although the C standard names this function "complex arc hyperbolic tangent", the inverse functions of the hyperbolic functions are the area functions. Their argument is the area of a hyperbolic sector, not an arc. The correct name is "complex inverse hyperbolic tangent", and, less common, "complex area hyperbolic tangent".
Inverse hyperbolic tangent is a multivalued function and requires a branch cut on the complex plane. The branch cut is conventionally placed at the line segmentd (-∞,-1] and [+1,+∞) of the real axis.
The mathematical definition of the principal value of the inverse hyperbolic sine is atanh z =| ln(1+z)-ln(z-1) |
| 2 |
| atan(iz) |
| i |