ccoshf, ccosh, ccoshl
From cppreference.com
Defined in header <complex.h>
|
||
(1) | (since C99) | |
(2) | (since C99) | |
(3) | (since C99) | |
Defined in header <tgmath.h>
|
||
#define cosh( z ) |
(4) | (since C99) |
1-3) Computes the complex hyperbolic cosine of
z
.4) Type-generic macro: If
z
has type long double complex, ccoshl
is called. if z
has type double complex, ccosh
is called, if z
has type float complex, ccoshf
is called. If z
is real or integer, then the macro invokes the corresponding real function (coshf, cosh, coshl). If z
is imaginary, then the macro invokes the corresponding real version of the function cos, implementing the formula cosh(iy) = cos(y), and the return type is real.Parameters
z | - | complex argument |
Return value
If no errors occur, complex hyperbolic cosine of z
is returned
Error handling and special values
Errors are reported consistent with math_errhandling
If the implementation supports IEEE floating-point arithmetic,
- ccosh(conj(z)) == conj(ccosh(z))
- ccosh(z) == ccosh(-z)
- If
z
is+0+0i
, the result is1+0i
- If
z
is+0+∞i
, the result isNaN±0i
(the sign of the imaginary part is unspecified) and FE_INVALID is raised - If
z
is+0+NaNi
, the result isNaN±0i
(the sign of the imaginary part is unspecified) - If
z
isx+∞i
(for any finite non-zero x), the result isNaN+NaNi
and FE_INVALID is raised - If
z
isx+NaNi
(for any finite non-zero x), the result isNaN+NaNi
and FE_INVALID may be raised - If
z
is+∞+0i
, the result is+∞+0i
- If
z
is+∞+yi
(for any finite non-zero y), the result is+∞+cis(y)
- If
z
is+∞+∞i
, the result is±∞+NaNi
(the sign of the real part is unspecified) and FE_INVALID is raised - If
z
is+∞+NaN
, the result is+∞+NaN
- If
z
isNaN+0i
, the result isNaN±0i
(the sign of the imaginary part is unspecified) - If
z
isNaN+yi
(for any finite non-zero y), the result isNaN+NaNi
and FE_INVALID may be raised - If
z
isNaN+NaNi
, the result isNaN+NaNi
where cis(y) is cos(y) + i sin(y)
Notes
Mathematical definition of hyperbolic cosine is cosh z =ez +e-z |
2 |
Hyperbolic cosine is an entire function in the complex plane and has no branch cuts. It is periodic with respect to the imaginary component, with period 2πi