casinhf, casinh, casinhl

From cppreference.com
< c‎ | numeric‎ | complex
Defined in header <complex.h>
float complex       casinhf( float complex z );
(1) (since C99)
double complex      casinh( double complex z );
(2) (since C99)
long double complex casinhl( long double complex z );
(3) (since C99)
Defined in header <tgmath.h>
#define asinh( z )
(4) (since C99)
1-3) Computes the complex arc hyperbolic sine of z with branch cuts outside the interval [−i; +i] along the imaginary axis.
4) Type-generic macro: If z has type long double complex, casinhl is called. if z has type double complex, casinh is called, if z has type float complex, casinhf is called. If z is real or integer, then the macro invokes the corresponding real function (asinhf, asinh, asinhl). If z is imaginary, then the macro invokes the corresponding real version of the function asin, implementing the formula asinh(iy) = i asin(y), and the return type is imaginary.

Parameters

z - complex argument

Return value

If no errors occur, the complex arc hyperbolic sine of z is returned, in the range of a strip mathematically unbounded along the real axis and in the interval [−iπ/2; +iπ/2] along the imaginary axis.

Error handling and special values

Errors are reported consistent with math_errhandling

If the implementation supports IEEE floating-point arithmetic,

  • casinh(conj(z)) == conj(casinh(z))
  • casinh(-z) == -casinh(z)
  • If z is +0+0i, the result is +0+0i
  • If z is x+∞i (for any positive finite x), the result is +∞+π/2
  • If z is x+NaNi (for any finite x), the result is NaN+NaNi and FE_INVALID may be raised
  • If z is +∞+yi (for any positive finite y), the result is +∞+0i
  • If z is +∞+∞i, the result is +∞+iπ/4
  • If z is +∞+NaNi, the result is +∞+NaNi
  • If z is NaN+0i, the result is NaN+0i
  • If z is NaN+yi (for any finite nonzero y), the result is NaN+NaNi and FE_INVALID may be raised
  • If z is NaN+∞i, the result is ±∞+NaNi (the sign of the real part is unspecified)
  • If z is NaN+NaNi, the result is NaN+NaNi

Notes

Although the C standard names this function "complex arc hyperbolic sine", the inverse functions of the hyperbolic functions are the area functions. Their argument is the area of a hyperbolic sector, not an arc. The correct name is "complex inverse hyperbolic sine", and, less common, "complex area hyperbolic sine".

Inverse hyperbolic sine is a multivalued function and requires a branch cut on the complex plane. The branch cut is conventionally placed at the line segments (-i∞,-i) and (i,i∞) of the imaginary axis.

The mathematical definition of the principal value of the inverse hyperbolic sine is asinh z = ln(z + 1+z2
)

For any z, asinh(z) =
asin(iz)
i