fmod, fmodf, fmodl
Defined in header <math.h>
|
||
float fmodf( float x, float y ); |
(1) | (since C99) |
double fmod( double x, double y ); |
(2) | |
long double fmodl( long double x, long double y ); |
(3) | (since C99) |
Defined in header <tgmath.h>
|
||
#define fmod( x, y ) |
(4) | (since C99) |
fmodl
is called. Otherwise, if any argument has integer type or has type double, fmod
is called. Otherwise, fmodf
is called.The floating-point remainder of the division operation x/y calculated by this function is exactly the value x - n*y, where n
is x/y with its fractional part truncated.
The returned value has the same sign as x
and is less or equal to y
in magnitude.
Parameters
x, y | - | floating point values |
Return value
If successful, returns the floating-point remainder of the division x/y as defined above.
If a domain error occurs, an implementation-defined value is returned (NaN where supported).
If a range error occurs due to underflow, the correct result (after rounding) is returned.
Error handling
Errors are reported as specified in math_errhandling.
Domain error may occur if y
is zero.
If the implementation supports IEEE floating-point arithmetic (IEC 60559),
- If
x
is ±0 andy
is not zero, ±0 is returned - If
x
is ±∞ andy
is not NaN, NaN is returned and FE_INVALID is raised - If
y
is ±0 andx
is not NaN, NaN is returned and FE_INVALID is raised - If
y
is ±∞ andx
is finite,x
is returned. - If either argument is NaN, NaN is returned
Notes
POSIX requires that a domain error occurs if x
is infinite or y
is zero.
fmod
, but not remainder is useful for doing silent wrapping of floating-point types to unsigned integer types: (0.0 <= (y = fmod(rint(x), 65536.0 )) ? y : 65536.0 + y) is in the range [-0.0 .. 65535.0]
, which corresponds to unsigned short, but remainder(rint(x), 65536.0 is in the range [-32767.0, +32768.0]
, which is outside of the range of signed short.
The double version of fmod behaves as if implemented as follows: